Posted by on
Tags: , , , , , , ,
Categories: Uncategorized

As artificial intelligence becomes an increasing part of our daily lives, from the image and facial recognition systems popping up in all manner of applications to machine learning-powered predictive analytics, conversational applications, autonomous machines, and hyperpersonalized systems, we are finding that the need to trust these AI based systems with all manner of decision making and predictions is paramount. AI is finding its way into a broad range of industries such as education, construction, healthcare, manufacturing, law enforcement, and finance. The sorts of decisions and predictions being made by AI-enabled systems is becoming much more profound, and in many cases, critical to life, death, and personal wellness. This is especially true for AI systems used in healthcare, driverless cars or even drones being deployed during war

However most of us have little visibility and knowledge on how AI systems make the decisions they do, and as a result, how the results are being applied in the various fields that AI and machine learning is being applied. Many of the algorithms used for machine learning are not able to be examined after the fact to understand specifically how and why a decision has been made. This is especially true of the most popular algorithms currently in use – specifically, deep learning neural network approaches. As humans, we must be able to fully understand how decisions are being made so that we can trust the decisions of AI systems. The lack of explainability and trust hampers our ability to fully trust AI systems. We want computer systems to work as expected and produce transparent explanations and reasons for decisions they make. This is known as Explainable AI (XAI)

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.