Posted by on
Tags: , ,
Categories: Uncategorized

Flux pinning is the phenomenon where a superconductor is pinned in space above a magnet. The superconductor must be a type-II superconductorbecause type-I superconductors cannot be penetrated by magnetic fields.[1] Some type-I superconductors can experience the effects of flux pinning if they are thin enough. If the material’s thickness is comparable to the London penetration depth, the magnetic field can pass through the material. The act of magnetic penetration is what makes flux pinning possible. At higher magnetic fields (above Hc1 and below Hc2) the superconductor allows magnetic flux to enter in quantized packets surrounded by a superconducting current vortex (see Quantum vortex). These sites of penetration are known as flux tubes. The number of flux tubes per unit area is proportional to the magnetic field with a constant of proportionality equal to the magnetic flux quantum. On a simple 76 millimeter diameter, 1-micrometer thick disk, next to a magnetic field of 28 kA/m, there are approximately 100 billion flux tubes that hold 70,000 times the superconductor’s weight. At lower temperatures the flux tubes are pinned in place and cannot move. This pinning is what holds the superconductor in place thereby allowing it to levitate. This phenomenon is closely related to the Meissner effect, though with one crucial difference — the Meissner effect shields the superconductor from all magnetic fields causing repulsion, unlike the pinned state of the superconductor disk which pins flux, and the superconductor in place.

Read more here:

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.