Posted by on
Tags: , , , , , , , , , , , , , , , , ,
Categories: Uncategorized

U.S. Army Combat Capabilities Development Command Army Research Laboratory scientist Dr. Michael S. Lee and co-workers are developing a  called a shortcut autoencoder that can restore single audio clips and images corrupted by various types of random noise.

What sets their work apart from previous studies is that they have improved applicability to 1-D signals (e.g., ), and are testing against stronger noise sources than usually considered, i.e., noise/signal ratios beyond 1.0.

“Deep learning is well known for being able to accurately detect objects in images, but it is also capable of synthesizing realistic-looking data, such as observed in the recently popular FaceApp,” Lee said. “In our work, we use  to reconstruct an image based on limited input information, for example, with only one percent of the pixel channels retained.”

Lee said his team’s model is trained with a lot of data of what other real pictures look like, and a variant of their image model can be used to reconstruct human speech from noisy audio signals even when the noise is much louder than the signal.

According to Lee, target Army applications are numerous, including eavesdropping, demodulating communications in the presence of strong jammers and perception of objects in image/video that are obscured intentionally, by darkness (low-light) or by weather events such as fog and rain.

“In the short run, this technology could provide a ‘Zoom/Enhance’ function for intelligence analysts,” Lee said. “In the long run, this type of technology may be seamlessly integrated into a camera’s hardware for improved image quality under various scenarios such as low-light and fog.”

In addition to Army applications, Lee noted that the  could benefit from this technology as well.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.